

|          |  |  |  | Sub | ject | Coc | de: I | KEE | 058 |
|----------|--|--|--|-----|------|-----|-------|-----|-----|
| Roll No: |  |  |  |     |      |     |       |     |     |

# B.TECH. (SEM-V) THEORY EXAMINATION 2021-22 ANALOG & DIGITAL COMMUNICATION

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

#### 1. Attempt *all* questions in brief.

 $2 \times 10 = 20$ 

Printed Page: 1 of 2

- a. Define modulation, Amplitude modulation & Angle Modulation.
- b. Draw the Block Diagram of communication system and mention the name of each block.
- c. What is frequency deviation of FM signal?
- d. Define Modulation index and percentage modulation in case of FM.
- e. Explain briefly, signal to noise ratio.
- f. Discuss Nyquist criteria for sampling.
- g. Draw the signal waveform of PAM, PWM & PPM.
- h. Explain briefly, Quantization process.
- i. What do you understand by Shannon Hartley Theorem?
- j. What is Electronic Commutator in TDM system?

#### **SECTION B**

# 2. Attempt any *three* of the following:

 $10 \times 3 = 30$ 

- a. Why is modulation needed?
- b. Differentiate between Narrowband FM and Wideband FM with their frequency spectrum and suitable mathematical expressions.
- c. Explain coherent method of generation and detection of PAM signal with suitable mathematical expressions.
- d. Compare SK. PSK & FSK. Also give the advantages and disadvantages of ASK. PSK & FSK.
- e. Explain Time Division Multiplexing (TDM) technique with suitable diagram.

#### **SECTION C**

# 3. Attempt any *one* part of the following:

 $10 \times 1 = 10$ 

- (a) Why Super heterodyne receiver is better than the TRF receiver? Explain.
- (b) An arbitrary modulating signal consisting of two modulating frequencies of 1 kHz and 2 kHz modulated a carrier signal having peak amplitude level of 1 V and frequency of 1 MHz, with amplitude modulation index of 0.5 and 0.2 respectively. Write the resultant expression for complex AM signal and sketch its frequency spectrum.

## 4. Attempt any *one* part of the following:

 $10 \times 1 = 10$ 

(a) What is Noise. Explain various forms of Noise and its sources.



| Subject Code: KEE05 |  |  |  |  |  |  |  |  |  |  |  | 2058 |  |
|---------------------|--|--|--|--|--|--|--|--|--|--|--|------|--|
| Roll No:            |  |  |  |  |  |  |  |  |  |  |  |      |  |

(b) An FM modulator operates at carrier-signal frequency of 500 KHz having peak amplitude of 10 V. A modulating frequency ( $f_m$ ) of 10 KHz modulates it with a peak frequency deviation ( $\delta$ ) of 10 KHz. From the Bessel function table, it is observed that a frequency modulation index of one yield three sets of significant sidebands. Compare actual minimum bandwidth as obtained using Bessel function and the approximate minimum bandwidth using Carson's rule.

# 5. Attempt any *one* part of the following:

 $10 \times 1 = 10$ 

**Printed Page: 2 of 2** 

- (a) Explain the working of Delta Modulation. How adaptive Delta modulation improves the performance of Delta modulation?
- (b) Let the maximum spectral frequency component  $(f_m)$  in an analog information signal is 3.3 KHz. Illustrate the frequency spectra of sampled signals under the following relationships between the sample frequency,  $f_s$  and maximum analog signal frequency,  $f_m$ 
  - $(i) f_s = 2 f_m$
  - (ii)  $f_s > 2 f_m$

## 6. Attempt any *one* part of the following:

 $10 \times 1 = 10$ 

- (a) What is pulse code modulation (PCM)? Explain briefly, generation and detection of PCM.
- (b) A Discreate Memoryless Source X has five symbols (so, s1, s2, s3, s4) and their probabilities of occurrence are given as 0.40, 0.20, 0.20, 0.10, 0.10, respectively. Construct Huffman Code and calculate efficiency.

# 7. Attempt any *one* part of the following:

 $10 \times 1 = 10$ 

- (a) Explain T-1 carrier system with the help of block diagram.
- (b) Consider 8 different alphabet source with probability of occurrence are given in Table 1

| 9 | SYMBOL      | A    | В    | C    | D    | E    | F    | G    | Н    |
|---|-------------|------|------|------|------|------|------|------|------|
|   | PROBABILITY | 0.30 | 0.20 | 0.15 | 0.12 | 0.10 | 0.07 | 0.04 | 0.02 |

Table – 1

According to Shannon – Fano technique generates binary code and calculates average word length, Entropy, and efficiency.